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We study rooted self avoiding polygons and self avoiding walks on deterministic
fractal lattices of finite ramification index. Different sites on such lattices are not
equivalent, and the number of rooted open walks Wn(S), and rooted self-avoiding
polygons Pn(S) of n steps depend on the root S. We use exact recursion equa-
tions on the fractal to determine the generating functions for Pn(S), and Wn(S)
for an arbitrary point S on the lattice. These are used to compute the averages
〈Pn(S)〉, 〈Wn(S)〉, 〈log Pn(S)〉 and 〈log Wn(S)〉 over different positions of S. We find
that the connectivity constant µ, and the radius of gyration exponent ν are the same for
the annealed and quenched averages. However, 〈log Pn(S)〉 � n log µ + (αq − 2) log n,
and 〈log Wn(S)〉 � n log µ + (γq − 1) log n, where the exponents αq and γq , take values
different from the annealed case. These are expressed in terms of the Lyapunov expo-
nents of random product of finite-dimensional matrices. For the 3-simplex lattice, our
numerical estimation gives αq � 0.72837 ± 0.00001; and γq � 1.37501 ± 0.00003, to
be compared with the known annealed values αa = 0.73421 and γq = 1.37522.
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1. INTRODUCTION

Understanding the behavior of linear polymers in random media has been an im-
portant problem in statistical physics, both for reasons of theoretical interest, and
applications. Calculation of quenched averages over the disorder is a very hard
problem both analytically and computationally.(1,2) There have been many specula-
tions and controversies regarding critical behavior of self-avoiding walks (SAWs)
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in random media (especially at the percolation threshold). Exact calculation of
quenched averages has been possible only in a few cases [B. Derrida, Directed
Polymers in a random media, Physica A 163:71 (1990).] and simulations are not
easy and often give contradicting results for this problem. In this context, it seems
useful to construct a toy model, where one can explicitly calculate the quenched
and annealed averages, and see their difference. This is what we shall do in this
paper, for the problem of linear polymers on a deterministic fractal.

It is straight forward to calculate annealed averages of self-avoiding walks
on deterministic fractals using real-space renormalization techniques.(3,4) One can
explicitly write down a closed set of exact renormalization equations in a finite
number of variables, so long as the fractal has a finite ramification index. Then,
the eigenvalues of the linearized recursion equations near the fixed point of the
renormalization transformation determine the critical exponents of the problem.
In fact, a good deal of understanding of the complex behavior of polymers with
additional interactions, e.g. self-interaction, or with a wall, or with-other polymers,
has been obtained by studying the corresponding analytically tractable problem
on fractals.(5)

It seems reasonable that the study of effect of inhomogeneities of the substrate
would also be more tractable on fractal lattices. This is specially promising, as
one does not need to introduce disorder in the problem from outside. The fractal
lattices do not have translational symmetry, and hence a polymer living on a fractal
lattice necessarily sees an inhomogeneous environment. Some regions of the lattice
are better connected than others, and the local free density of the polymer per
monomer in these regions would be lower than other parts. We want to understand
the effect of presence of such regions on the large-scale structure and properties of
the polymer. The main difference from the usual polymer in disordered medium
problem to the case we study here is that the favorable and unfavorable regions are
not randomly distributed over the lattice, but have a predetermined regular structure
in the case of deterministic fractals. In this context, the annealed averages, which
means averaging the partition function of the polymer over different positions,
are appropriate in cases where the polymer can move freely over different parts
of the lattice. The quenched average is averaging the logarithm of the partition
function of the polymer over different positions, and would be appropriate where
this freedom is not present.

The annealed average for linear and branched polymers have been calculated
exactly for many different fractal lattices.(5) But to our knowledge the quenched
averages have not been calculated so far on any fractal lattice. In this paper, we
use the recursive structure of fractals to calculate quenched averages for linear
polymers on deterministic fractals. We find that the connectivity constant µ, and
the radius of gyration exponent v are the same for the annealed and quenched
averages. The critical exponents for the quenched case can be expressed as the
Lyapunov exponents for random product of finite-dimensional matrices. These
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can be estimated numerically efficiently by Monte Carlo methods, which we do
for the illustrative case of the 3-simplex fractal.

The rest of the paper is organized as follows: In Sec. 2 we define the 3-simplex
lattice and specify the scheme we use to label the sites of the lattice. We also define
the annealed and quenched averages precisely, and the generating functions for
different quantities of interest. In Sec. 3 we work out the recursion equations for
generating functions of self-avoiding polygons (SAPs) and SAWs on 3-simplex.
In Sec. 4 we derive rigorous bounds on the number of rooted SAPs and SAWs,
and prove that the connectivity constant µ, and the size exponent ν are the same
for the quenched and annealed averages. In Sec. 5, we study the variation of the
number of SAPs and SAWs with the position of the root on the 3-simplex lattice
numerically. In Sec. 6, we determine numerical values of the critical exponents
in the quenched case by Monte Carlo determination of Lyapunov exponents for
random products of matrices.

2. PRELIMINARIES AND DEFINITIONS

We will illustrate the general technique by working out explicitly the simple
case of SAWs and SAPs on the 3-simplex fractal. The treatment is easily general-
ized to other recursively defined fractals of finite ramification index.

The 3-simplex graph is defined recursively as follows (Fig. 1): the graph
of the first order triangle is a single vertex with 3 bonds. The (r + 1)th order
triangle is formed by joining graphs of three rth order triangle by connecting a
dangling bond of each to a dangling bond of the other rth order subgraphs. There
is one dangling bond left in each graph and 3 bonds altogether. In general, the rth
order graph will have 3r−1 vertices and (3r − 3)/2 internal bonds, and 3 boundary
bonds. Clearly, the fractal dimension of this lattice is log 3/log 2.

We use a ternary base single integer to label different sites of an rth order
triangle. The labeling is explained in Fig. 1. A point on the rth order triangle is
labelled by a string of (r − 1) characters, e.g. 0122201 . . . Each character takes
one of three values 0, 1 or 2. The leftmost character specifies in which of the
three sub-triangles the point lies (0, 1 and 2 for the top, left and right sub-triangle
respectively). The next character specifies placement in the (r − 1)th order sub-
triangle, and so on. On an infinite lattice, specification of S requires an infinitely
long string. In discussing the local neighborhood of a site, we only need to know
the last few digits of S We will denote by [S]r the substring consisting of the last
r characters of the integer label of S, and by sr the rth digit in the string S counted
from the right. As an example, for the string S = 21 . . . 0112011, [S]2 = 11, and
S3 = 0. Also, in an obvious notation, [S]r = sr [S]r−1.

The rooted polygons are polygons that pass through a given site (see Fig. 1)
called the root. Let Pn(S) be the number of rooted polygons of perimeter n
corresponding to root S. The generating function for rooted polygons for root
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Fig. 1. The figure shows a 3 simplex graph of order 5, which is formed by joining 3 fourth order
graphs. In general the rth order 3-simplex is formed by joining 3 graphs of (r − 1)th order such that
there is one dangling bond left in each subgraph. The thicker line shows a polygon of size 35 which
passes through a particular site S.

S is defined as

P(x ; S) =
∞∑

n=3

Pn(S)xn. (1)

Similarly, we define Wn(S) as the number of open walks of length n whose
one end-point is S, and the corresponding generating function W (x ; S) by

W (x ; S) =
∞∑

n=1

Wn(S)xn. (2)

For a given value of n, the values of Pn(S) and Wn(S) depend only on the last
few digits in the ternary integer labeling S. For example, it is easy to check that if
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the last two digits of S are unequal, i.e. if s1 �= s2 we have

P(x ; S) = x3 + x6 + 3x7 + 3x8 + x9 + O(x12). (3)

But if s1 = s2

P(x ; S) = x3 + x7 + 2x8 + x9 + O(x12). (4)

In general, for any SAP configuration consisting of perimeter n, with n <

3 × 2r , with r an integer, one can find an (r + 1)th order triangle graph, such that
the polymer lies completely inside it. Then, the numbers Pn(S) and Wn(S) depend
only the relative position of S within this triangle, and hence only on [S]r . This
then allows us to define averages of functions of Pn(S) and Wn(S). One assumes
that S is equally likely to be any one of the 3r sites in the (r + 1)th order triangle.
So, for example, for n = 7, we have r = 2, and P7(S) depends only on [S]2. Out
of 9 possibilities for [S]2, 3 have s1 = s2, and 6 cases have s1 �= s2. Thus, if S is
chosen at random, using Eqs. (3) and (4), we have Prob[P7(S) = 3] = 2/3, and
Prob[P7(S) = 1] = 1/3. We shall use angular brackets 〈 〉 to denote averaging over
different positions of the root S. This gives 〈P7〉 = 7/3, and 〈log P7〉 = 2

3 log 3.
Other averages can be calculated similarly.

We shall call the values 〈Pn(S)〉, and 〈Wn(S)〉 as the annealed averages of
Pn(S) and Wn(S), and define their generating functions

P̄(x)
∞∑

n=3

〈Pn(S)〉xn . (5)

W̄ (x)
∞∑

n=1

〈Wn(S)〉xn . (6)

We define the growth constant µa , and the annealed exponents αa and γa in
terms of the behavior of 〈(Pn(S)〉 and 〈Wn(S)〉 for large n:

log〈Pn(S)〉 = n log µa + (αa − 2) log n + O(1). (7)

log〈Wn(S)〉 = n log µa + (γa − 1) log n + O(1). (8)

It was shown in ref. 3 that µa ≈ 1.61803, αa ≈ 0.73421 and γa ≈ 1.37522.
For the quenched averages, the exponents αq and γq are defined by the

condition that for large n

〈log Pn(S)〉 = n log µq + (αq − 2) log n + O(1). (9)

〈log Wn(S)〉 = n log µq + (γa − 1) log n + O(1). (10)

We define the order of a polygon as the order of the smallest triangular
subgraph that contains all the sites occupied by the polygon. For defining the size
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exponent νa and νq , it is sufficient to adopt the simple definition that the diameter
of a polygon is 2r if its order is r. One can then define the mean diameter of all
polygons of perimeter n rooted at a given site S, as the average diameter, with all
such polygons given equal weight. We define the quenched average mean diameter
as the average over different positions of S of the average diameter of polygons of
perimeter n rooted at S. The size-exponent νq for quenched averages is defined by
the condition that the quenched average diameter varies as ννq for large n.

To define the annealed average for the diameter of SAP of perimeter n, we
assign equal weight to all such loops within an sth order triangle with 2s > n, and
calculate the average diameter. It is easy to see that the answer does not depend
on s. Again, we define the annealed size exponent νa by the condition that the
annealed average diameter varies as nνq for large n.

The exponents for open walks can be defined similarly. We shall argue that
the size exponents for open walks and polygons are the same, and further that
µq = µa and νq = νa , and hence simply write µ and v without any subscript, if
the distinction is unnecessary.

Note that we have to first average over different positions of the root for a
fixed n, and then let n tend to infinity to define νq . If we take the large n limit
first, for a fixed position of the root, then even the convergence of large n limit of
log[Pn(S)µ−n]/ log n and log[Wn(S)µ−n]/ log n is not obvious due to the irregular
variation of log Pn(S) and log Wn(S) with n. The amount of fluctuations in different
averages of observables over different positions of the root will be discussed in
Sec. 5.

3. THE RENORMALIZATION EQUATIONS

In this section, we briefly recapitulate the renormalization scheme for cal-
culating the annealed averages used in ref. 3, and then adapt it for calculating
properties of rooted walks.

Consider one rth order triangular subgraph of the infinite order graph. It is
connected to the rest of the lattice by only three bonds. Our aim is to sum over
different configurations of the SAW that lie within the subgraph, with a weight x
for each step of the walk. These configurations can be divided into four classes,
as shown in Fig. 2, and we define four restricted partition functions A(r ), B(r ), C (r )

and D(r ) corresponding to these four classes.
Here A(r ) is the sum over all configurations of the walk within the rth order

triangle, that enters the triangle from a specified corner, and with one endpoint
inside the triangle. B(r ) is the sum over all configurations of walk within the triangle
that enters and leaves the triangle from specified corner vertices. C (r ) and D(r ) are
defined similarly (Fig. 2). For any given value of r, B(r ), D(r ), A(r )√x, C (r )√x are
finite degree polynomials in x with non-negative integer coefficients. It is easy to
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Fig. 2. Different restricted partition functions for the rth order triangle. Internal vertices inside the rth
order triangle are not shown.

see that the starting values of these variables are

A(1) = √
x, B(1) = x, C (1) = D(1) = 0. (11)

We note the generating function for P̄(x) is simply related to the generating
function of unrooted polygons Pnoroot(x) by the relation P̄(x) = x d

dx Pnoroot(x). The
sum over all unrooted polygons of order (r + 1) within an (r + 1)th order triangle
is B(r )3

, and number of sites in the (r + 1)th order triangle is 3r , hence we get

Pnoroot(x) =
∞∑

r=1

3−r B(r )3
(12)

here we have suppressed the x dependence of B. In rest of the paper, we will
suppress the x-dependence of variables A, B, C, D, to simplify notation, whenever
the meaning is clear from the context.

The sum over unrooted open walks can be expressed similarly

Pnoroot(x)
∞∑

r=1

3−r [3A(r )2 + 3B(r ) A(r )2 + 3B(r )2
D(r )]. (13)

It is straight forward to write down the recursion equations for these weights
A(r+1), B(r+1), C (r+1) and D(r+1) in terms of the weights at order r. For example,
Fig. 3 shows the only two possible ways one can construct a polymer configuration
of type B.

B(r+1) = B(r )2 + B(r )3
. (14)

Similarly, we get
(

A(r+1)

C (r+1)

)
=

(
1 + 2B(r ) + 2B(r )2

2B(r )2

B(r )2
3B(r )2

) (
A(r )

C (r )

)
(15)

and

D(r+1) = A(r )2 + 2A(r )2
B(r ) + 4A(r ) B(r )C (r )

+ 6B(r )C (r )2 + D(r )(2B(r ) + 3B(r )2
). (16)
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Fig. 3. Two possible ways of getting a polymer configuration of type B.

We note that the Eq. (14) has one nontrivial fixed point B = B∗ =
√

5−1
2 .

For starting value x < B∗, the recursions give B(r ) → 0 as r tends to infinity,
but for x > B∗, B(r ) increases to infinity for large r. This gives the connectivity
constant µ = 1/B∗ = (

√
5 + 1)/2, the golden mean. Linearizing the recursion

equation about this nontrivial fixed point, we see that deviations from the fixed
point value increases as B(r+1) − B∗ ≈ λ1(B(r ) − B∗), with λ1 = 2 + µ−2. This
then implies(3) that νa = log 2/ log λ1 ≈ 0.79862.

The critical exponent γ is determined in terms of the larger eigen-
value λ2 of the 2 × 2 matrix in Eq. (15) evaluated at the non-trivial fixed
point,(3)(A∗, B∗, C∗) = (0, 1/µ, 0). We get

γa = log(λ2
2/3)

log λ1
≈ 1.37522. (17)

The recursion equations for rooted SAP’s and SAW’s are constructed simi-
larly. We define B(r )

s (S) for s = 0, 1 and 2 as the sum over walks on the rth order
triangle that go through two corners of the triangle, visit the site S, avoiding the
top, left and right corners for s = 0, 1 and 2 respectively (Fig 4). Since B(r )

s (S)
depends on S only through [S]r−1, we shall write B(r )

s (S) = B(r )
s ([S]r−1). For any

given r and S, these are finite degree polynomials in x. Similarly, we have to define
three functions A(r )

s ([S]r−1) and C (r )
s ([S]r−1) for s = 0, 1, 2 instead of the single

variables A, C and D for the unrooted problem, as the root breaks the symmetry
between the corner sites of the rth order triangle (Fig. 4).

A site in the (r + 1)th order triangle is characterized by a string of r characters.
Hence, a site characterized by string S at the rth stage will be characterized by one
of the strings 0S, 1S or 2S at (r + 1)th stage.

We can now write the recursions similar to Eq. (14) for B(r+1)
s ([S]r ), for

s = 0, 1 and 2 in terms of weights of rth order graphs. For example, one can
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Fig. 4. Definition of weights for rooted graphs. In case of D, S can be any of the two end-points of the
walk (shown by filled circles in the figure).

construct B(r+1)
0 (0S) in just one way as shown in Fig. 5. The recursion relation for

B(r+1)
0 ([S]r ) will be

Br+1
0 (0[S]r−1) = (B(r ))2 B(r )

0 ([S]r−1). (18)

Clearly, all the recursion relations for rooted polygons are linear in the rooted
restricted partition functions of lower order B(r )

s ([S]r−1), and can be written in the
matrix form. With [S]r = sr [S]r−1, we have

⎛

⎜⎜⎝

B(r+1)
0 ([S]r )

B(r+1)
1 ([S]r )

B(r+1)
2 ([S]r )

⎞

⎟⎟⎠ = Msr

⎛

⎜⎜⎝

B(r )
0 ([S]r−1)

B(r )
1 ([S]r−1)

B(r )
2 ([S]r−1)

⎞

⎟⎟⎠ (19)

where

M0 =

⎛

⎜⎝
B2 0 0

0 B B2

0 B2 B2

⎞

⎟⎠ ; M1 =

⎛

⎜⎝
B 0 B2

0 B2 0

B2 0 B

⎞

⎟⎠ ;
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Fig. 5. The only configurations contributing to B(r+1)
0 (x, 0S). Here each sub-triangle is a r th order

3-simplex.

M2 =

⎛

⎜⎝
B B2 0

B2 B 0

0 0 B2

⎞

⎟⎠ . (20)

Here we have suppressed the superscript (r ) of B in the matrices M0,M1

and M2. The generating function for rooted polygons, rooted at a site S is given
by

P(x ; S) =
∞∑

r=1

B(r )
sr

([S]r−1)B(r )2
(21)

Similarly, we can write the recursion equations for A(r )
s ([S]r−1) and

C (r )
s ([S]r−1) and D(r )

s ([S]r−1) defined analogous to B(r )
s ([S]r−1), with s = 0, 1,

or 2. The A′s and C ′s depend on each other and the recursion relations for them
are

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(r+1)
0 ([S]r )

A(r+1)
1 ([S]r )

A(r+1)
2 ([S]r )

C (r+1)
0 ([S]r )

C (r+1)
1 ([S]r )

C (r+1)
2 ([S]r )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Lsr

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(r )
0 ([S]r−1)

A(r )
1 ([S]r−1)

A(r )
2 ([S]r−1)

C (r )
0 ([S]r−1)

C (r )
1 ([S]r−1)

C (r )
2 ([S]r−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)
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where

L0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 B2 B2

0 B B2 0 0 0

0 B2 B 0 0 0

B2 0 0 B2 0 0

0 0 0 0 B2 0

0 0 0 0 0 B2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

L1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

B 0 B2 0 0 0

0 1 0 B2 0 B2

B2 0 B 0 0 0

0 0 0 B2 0 0

0 B2 0 0 B2 0

0 0 0 0 0 B2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

L2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

B B2 0 0 0 0

B2 B 0 0 0 0

0 0 1 B2 B2 0

0 0 0 B2 0 0

0 0 0 0 B2 0

0 0 B2 0 0 B2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

Here again we have suppressed the superscript (r) on the B’s. One can now
write similar recursion for D(r )([S]r ) also. [Like the annealed case,(3) these vari-
ables are not needed for the determination of critical exponents, though they are
needed to determine Wn(S).] Here we write down the recursions for D(r+1)

0 ([S]r ).

Similar relations will hold for D(r+1)
1 ([S]r ) and D(r+1)

2 ([S]r ).

D(r+1)
0 (0[S]r−1) = (AB + 2BC)(A1 + A2) + B2 D0

D(r+1)
0 (1[S]r−1) = (A + AB)A1 + (AB + 2BC)(C1 + C2)

+ D0 B + D2 B2 + 2BCC0

D(r+1)
0 (2[S]r−1) = (A + AB)A2 + (AB + 2BC)(C1 + C2)

+ D0 B + D1 B2 + 2BCC0 (24)

where we have suppressed the ([S]r−1) dependence, and the superscripts (r) in the
terms on the right hand side.
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We can also express the open walks generating function W (x ; S) in terms of
these restricted partition functions. It is easy to show that

W (x ; S) =
m∑

r=1

[ ∑

s ′ �=sr

As ′ ([S]r−1)(A + AB) + Dsr ([S]r−1)B2

]

+AAsm ([S]m−1]) + O(x2m−1
). (25)

In the limit of large m, the last term can be dropped, and we get

W (x ; S) =
r=∞∑

r=1

[ ∑

s ′ �=sr

As ′ ([S]r−1)(A + AB) + Dsr ([S]r−1)B2

]
. (26)

For order r, there are 3r−1 different choices for [S]r−1, and 3 choices of s each
of the As, Bs, Cs and Ds , a total of 4.3r polynomials. The generating function for
walks rooted at one end W (x ; S) can be easily written in terms of these generating
functions. To determine P(x ; S) and W (x ; S) to given order n in x, we need to
determine these only upto a finite order r. Thus, we have an efficient algorithm to
explicitly determine these polynomials to any given order, and also to calculate the
different averages over different sites. The explicit enumeration of rooted walks
on fractals was studied by Reis(7) and Ordemann et al.,(8) but the sizes they could
reach were much smaller. We have obtained exact values of SAWs upto length 128
and SAPs upto 768 for all sites of the fractal, using our recursion equations (see
Table I).

Table I. Values of quenched and annealed averages for SAP and SAW for some

representative values of n

n log〈Pn〉 − n log µ 〈log Pn〉 − n log µ log〈Wn〉 − n log µ 〈log Wn〉 − n log µ

3 −1.4431783323 −1.4442955737 0.3481239636 0.3481239636
7 −2.5207277722 −2.6372273881 0.6327712915 0.5825518549
8 −2.8684082046 −2.8875491290 0.6648211368 0.6276714199
9 −4.3304492827 −4.3328867211 0.6797287773 0.6707214751

15 −4.0919348312 −4.5179887766 0.9155729406 0.8693414702
16 −3.8277310472 −4.0586132570 0.9370278020 0.8829866367
17 −3.7374926267 −3.8857022562 0.9544167885 0.8994169039
18 −3.8145473883 −3.9148386256 0.9693553123 0.9204691093
19 −4.0133264968 −4.0828080387 0.9815329752 0.9429045509
20 −4.3366352924 −4.3875115144 0.9920263470 0.9648015516
40 −4.8957208753 −5.0810665168 1.2742813939 1.2185712350
80 −6.6481626291 −7.2828262546 1.5384807521 1.4965133405

120 −7.0076576021 −7.0786974211 1.6575701703 1.6393667050
160 −9.5287171328 −10.9169115887
320 −9.6664681509 −9.7339866481
640 −8.6892637799 −8.7886721125
768 −10.8851067629 −10.9571396026
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4. DETERMINATION OF THE GROWTH CONSTANT

We note that the recursion equation of B(r ) (Eq. (14)) does not involve the
rooted variables B(r )

s (S), but not vice versa. If we start with a value x < B∗ = 1/µ,
then for large r, B(r ) tends to zero. This would make the rooted variables B(r )

s (S)
also tend to zero for large r. However, if x > B∗, then B(r ) will diverge for large
r, and this would make B(r )

s (S) also diverge for all S. Thus we conclude that for
all S, P(x ; S) and W (x ; S) converge if x < 1/µ, and diverge if x > 1/µ. Hence
it follows that the critical growth constant is µ, for all S.

Consider now polygons or walks of finite length n, with n large. We think
of x as the fugacity variable for each step. Then large n corresponds to initial
value x very near 1/µ, say x = 1/µ − δ where δ scales as 1/n. Under renor-
malization, the value of B∗ − B(r ) increases, and there is a value r0 such that
for r − r0 � 1, B(r ) ≈ 0, and for r0 − r � 1, B(r ) ≈ B∗. Then, the recursion
Eqs. (19) and (22) imply that the rooted partition functions B(r )

s (S) and C (r )
s (S)

also become very small for r > r0, while A(r )
s tends to a finite value as r tends to

infinity. The value of r0 increases as δ is decreased as r0 ≈ log(1/δ)
log λ1

, and the diameter

of polymer increases as 2r0∼δ−νa . As δ∼1/n, this implies that the average size of
polymer increases as nν , independent of S, and hence νq = νa .

An alternative proof of the assertion that the growth constant µ is the same
for all sites is provided by setting up upper and lower bounds for Pn(S) and Wn(S),
which have the same exponential growth.

We first obtain an upper bound on Pn(S). If we ignore the constraint that the
walk has to pass through S, we get an upper bound on the number of such walks.
For example, for walks contributing to B(r )(S) we can write B(r )

σ (x, S) ≤ B(r )(x)
where σ = 0, 1, 2 and the inequality between polynomials is understood to imply
inequality for the coefficient of each power of x. This implies that for all sites S,

P(x, S) ≤
∞∑

r=1

B(r )3
. (27)

If we write the function giving the upper bound in right-hand-side as U (x), then
U (x) satisfies the equation

U (x) = x3 + U (x2 + x3). (28)

This functional equation again has the fixed point at x∗ = 1/µ, and linear
analysis near the fixed point shows that U (x) diverges as − log(1 − xµ) as x tends
to 1/µ from below. This implies that the coefficient of xn in the Taylor expansion
of U (x) varies as µn/n for large n. Thus,

Pn(S) ≤ Kµn/n, for all n, and all S, (29)

where K is some constant.
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We now obtain a lower bound for Pn(S). Let S0 be the site whose label is a
string with all digits 0. This is the the topmost site of the triangular graph. For
such a site B(r )

0 (x ; S0) satisfies the following recursion

B(r )
0 (S0) = (B(r−1))2 B(r−1)

0 (S0). (30)

Clearly, for all sites S, we have B(1)
0 (S) ≥ B(1)

0 (S0). Then, using Eqs. (18) and
(19), by mathematical induction, we see that for all r, s and S

B(r )
s (S) ≥ B(r )

0 (S0), for s = 0, 1, 2. (31)

This implies for any site S

P(x ; S) ≥ P(x ; S0) =
∞∑

r=1

B(r )2
B(r )

0 (S0) (32)

Clearly, the lower bound is actually attained for S = S0. If we take P(x, S0) =
x L(x), then L(x) satisfies the following equation

L(x) = x2 + x2 L(x2 + x3) (33)

Assuming that L(x) near x = 1/µ has a singular expansion of the form
L(1/µ − δ) = L(1/µ) − K δb, where K is some constant, we get

b = 2 log µ/ log(2 + µ−2) = 0.92717 (34)

and hence

Pn(S) ≥ K1µ
nn−b−1 (35)

where K1 is a constant. Hence for any S, we have proved

K1µ
nn−b−1 ≤ Pn(S) ≤ Kµn/n. (36)

Thus, in the limit of large n, for all sites S, we must have

lim
n→∞

log Pn(S)

n
= µ. (37)

We also get the nontrivial bounds

1 − b ≤ αq ≤ 1. (38)

Similarly it is easy to prove upper and lower bounds for open walks. A simple
lower bound is provided by the inequality Wn(S) ≥ Pn(S), for all S. An upper
bound to 〈log Wn(S)〉 is provided by log〈Wn(S)〉. But the latter is known to vary
as n log µ + (γa − 1) log n for large n. Hence we get

lim
n→∞

1

n
〈log Wn(S)〉 = µ. (39)
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5. VARIATION OF Pn(S) AND Wn(S) WITH S AND n

We use the recursion Eqs. (19–25) to calculate the values of Pn(S) and Wn(S)
for different choices of the root S. For a SAP of order r, the minimum perimeter is
3 × 2r−2. We could study these recursions upto r = 9 and hence took into account
all self avoiding polygons upto sizes n = 3 × 28 = 768. A 9th order triangle has
38 = 6561 vertices. We calculated the different polynomials As(S), Bs(S), Cs(S)
and Ds(S) for s = 0, 1, 2 and 38 possible values of S, keeping all terms up to
order x768 in each polynomial. The coefficients for large order become rather
large. For example, the number of polygons of size 768 for the topmost site of
the fractal graph is ≈ 2.5 × 10154. We used the symbol manipulation software
Mathematica,(6) which allows one to work with integers of arbitrary size. These
then are used to calculate various averages.

In Fig. 6, we have shown the variation of Pn(S)µ−n with n for some selected
values of S. We see clearly roughly log-periodic variation in these numbers. We
have also plotted the upper and lower bounds on Pn(S) derived in Eqs. (27) and (32).
As was argued there, there is a site S0 which saturates the lower bound. However,
there is no single site that saturates the upper bound. Most of the polygons having
a given value of perimeter n, have a particular order r, and have to pass through
the three bonds joining the (r − 1)th order subgraphs. The six sites that are at

Fig. 6. Figure shows Hn(S) = log Pn(S)µ−n plotted as a function of n for five different values of S.
These S are chosen near the constriction points and hence they maximize Pn(S) for a given n. Here
S1 = 00000211, S2 = 00002111, S3 = 00021111, S4 = 00211111 and S5 = 02111111. Each of these
values of S attains the maximum for some range of n. The points, defined only for integer n, have been
joined by straight-line segments as an aid to the eye.
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Fig. 7. A plot of average value of log Pn(S)µ−n(Hn) as a function of n. The uppermost and the
lowermost curves are theoretically derived upper and lower bounds to this number over different
positions. The dashed and dotted lines show the annealed and quenched average value respectively.

the ends of these bonds clearly maximize Pn(S). The sites change if n changes to
correspond to polygons with one higher order.

In Fig. 7, we show the variation of exactly calculated values of log〈Pn(S)〉 and
〈log Pn(S)〉 with n. We also show the maximum and minimum values of log Pn(S)
attained, as a function of n, as S takes all possible values. Note that though we
could study sizes upto 768 exactly, it is difficult to estimate αa and αq even to
two digit precision from the data using standard series extrapolation techniques
because of log-periodic oscillations.

The log-periodic variation of Pn is easy to understand qualitatively.(9,10) All
SAP’s of order r in a given (r + 1)th order triangle have to pass through the three
constriction points where the constituting rth order triangles are joined. There is a
natural length n∼Cλr

1, where C is some constant, for a polymer that does this. If
the length is somewhat smaller than this value, the polymer is a bit stretched, and
has a lower entropy. If it is a higher by a factor 1.5 or so, it loses entropy as many
monomers have to squeeze in the same space. If the value of n increases by a factor
λ1, then same thing happens at a higher order triangle. The sites which maximize
Pn(S) for a given n are the at the constriction points of the the corresponding rth
order triangles. As log n changes, these points also change. The fractional number
of points S for which Pn(S) attains its maximum value clearly varies as 3−r , where
r is the order of a typical loop of perimeter n. Using n∼R1/ν , we see that the density
of points varies as R−d ∼ n−d/ν , where d = log 3/ log 2 is the fractal dimension
of the lattice.
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Fig. 8. The figure shows plots of Hn = log〈Wn(S)〉 − Cn (solid line) and 〈log Wn(S)〉 − Cn (dotted
line), where Cn = n log µ + (γ − 1) log n.

The log-periodic oscillations for open walks are much smaller in magnitude
than in case of polygons. Here also, the number of open walks of order r is greater
if the root is near the corner point of an r th order triangle, as then it gets more space
to explore and hence more entropy. We find the amplitude of oscillations in Hn is
approximately 100 times smaller than for the corresponding quantity for closed
polygons shown in Figs. 6 and 7. In Fig. 8 we show the exact values quenched and
annealed averages for walks upto size 128. The difference in the two averages in
the case of walks is smaller than for the polygons.

In Figs. 9 and 10 we have shown the density plots for SAPs on fractal lattices
for n = 400 and n = 600, The different sites are shown by different colours
depending on the value of log Pn at that site. The blue regions represent sites with
largest values of Pn(S). We clearly see that depending on value of n some sites
are more favoured than others. We note that the difference between maximum and
minimum values of log Pn(S) is more than 10 for n = 400, but only about half of
this value for n = 600.

6. CALCULATION OF EXPONENTS FOR QUENCHED AVERAGES

We note that to a very good approximation, all loops of a given perimeter n
have the same order, say r0, where r0 is an integer approximately equal to log n

log λ1
.

The contribution of these loops to P(x ; S) then comes mostly from the single
term Tr0 = B(r0)

sr0
([S]r0−1)B(r0)2

corresponding to r = r0 in the Eq. (21). Also, if



72 Sumedha and Dhar

Fig. 9. The plot shows the log(Pn(S))/ log(Pn(Smin)) for n = 400 for all sites for fractal lattice upto
r = 9 generations.

x = 1/µ = B∗, then the contribution is Pn(S)µ−n , which is a slowly varying
function of n. The contribution of nearby values of n to the r0th term will be
comparable. The number of such terms that contribute to the r0th term is of order
n. Thus we have,

Pn(S)µ−n∼1

n
Tr0 (S) (40)

For x = B∗, the matrices M0,M1,M2 become independent of r, and Tr0 is
of the form

Tr0 = 〈v1|Msr−1 . . .Ms4 Ms3 Ms2 Ms1 |v2〉 (41)

Here 〈v1| and |v2〉 are specific 3-dimensional bra- and ket vectors. Then
from the general theory of random product of matrices,(11–13) it follows that the
probability distribution of Tr0 tends to a log-normal distribution for large r0, and

lim
r0→∞

1

r0
log Tr0 = log �1 (42)

where log �1 is the largest Lyapunov exponent for the random product of matrices.
This also implies that the variance of log Pn(S) will be proportional to log n. This
is much less than some positive power of n, which is the expected behaviour for the
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Fig. 10. The plot shows the log(Pn(S))/ log(Pn(Smin)) for n = 600 for all sites for fractal lattice upto
r = 9 generations.

usual polymer in the random medium(14) problem. For example, for the directed
polymer in a random medium, the variance of free energy of an n monomer chain
varies as n2/3. This is due to the fact that in the deterministic fractal case studied
here, the favourable and unfavourable regions are very evenly distributed.

It then follows that 〈log[Pn(S)µ−n]〉 tends to r0 log �1 − log n. Putting r0 ≈
(log n)/(log λ1), we get

αq = 1 + log �1/ log λ1. (43)

It is straightforward to estimate �1 numerically. We start with an arbitrary
initial 3-dimensional vector |v0〉 of positive elements with sum 1, and evolve it
randomly by the rule

|v j+1〉 = a j M j |v j 〉 (44)

where M1, is randomly chosen to be one of three matrices M0, M1, M2 and a j is
a multiplying factor chosen so that the sum of elements of new vector is again 1.
The M3 are

M0 =

⎛

⎜⎝
B∗2

0 0

0 B∗ B∗2

0 B∗2
B∗

⎞

⎟⎠ ;
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M1 =

⎛

⎜⎝
B∗ 0 B∗2

0 B∗2
0

B∗2
0 B∗

⎞

⎟⎠ ;

M2 =

⎛

⎜⎝
B∗ B∗2

0

B∗2
B∗ 0

0 0 B∗2

⎞

⎟⎠ ; (45)

where B∗ = (
√

5 − 1)/2.
We iterate Eq. (44) many times, and estimate log �1 by log �1 ≈

1
jmax

∑ jmax

j=1 log a j . The error in log λ1 decreases as σ/
√

jmax, where σ is the rms

fluctuation of log a j . Values of jmax∼108 require less than a minute of CPU. For
jmax = 109, we find σ ≈ 0.45 and

log �1 = −0.23575 ± 0.00001. (46)

Note that this corresponds to a lattice with 3 jmax sites. This gives αq =
0.72837 ± 0.00001.

A similar calculation for the exponent γq can also be done. To calculate the
exponent γq , we note that again the most contribution to W (x ; S) will come from
terms with r ≈ r0. At x = B∗,L0,L1 and L2 become independent of r. If

Ur0 = 〈u1|Lsr−1 . . .Ls4Ls3Ls2Ls1 |u2〉 (47)

where 〈µ1| and u2〉 are 6-dimensional bra- and ket vectors and if log �2 is the
largest Lypanouv exponent for the random product of matrices,

lim
r0→∞

1

r0
log Ur0 = log λ2 (48)

Hence, log A(r )
i (S) and log C (r )

i (S) will increase as r log �2, for almost all

S, for r < r0. For r > r0, A(r )
i ≈ A(r0)

1 and C (r )
i ≈ 0. Therefore it follows that

the leading order contribution to Eq. (29) will come from r = r0 term. Hence
〈log Wn(S)µ−n〉 tends to log(λ2�2)r0 − log(n) and we get

γq = log(λ2�2)

log(λ1)
. (49)

We find for jmax = 109, σ ≈ 1 and �2 = 1.04845 ± 0.00003. Substituting
in equation above we get γq = 1.37501 ± 0.00003.

7. CONCLUDING REMARKS

Calculation of quenched averages to determine the behavior of polymers in
inhomogeneous media is a difficult problem, and there have been many conflicting
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claims and controversies in literature. In particular, the problem of SAW’s on perco-
lation clusters at and above the critical threshold is still not fully understood.(15–17)

In this paper, we have a clearly defined non-trivial case, where quenched and
annealed averages can be determined exactly and hence compared. The fractal
is nearly homogeneous, and the difference between the annealed and quenched
averages is not large. We showed that the value of growth constant µ and the
size exponent v are the same for the quenched and annealed cases, but the critical
exponents γ and α do differ in the two cases. In particular, the hyper scaling
relation dv = 2 − α is valid only for the annealed average. We obtained rigorous
bounds on the quenched exponents, and estimate them numerically to very good
precision. Hence, even though the disorder is small it is relevant in this case.

We can speculate about the possible extentions of our work for understanding
of the more general problem of polymers in random media. The effect of disorder
on the SAW size exponent ν on percolation networks is highly debated. For p > pc

the exponent remains unchanged, but the value of the exponent at p = pc is not
known. There has been a lot of inconclusive discussion in literature about whether
disorder in substrate leads to swelling, or collapse of polymer, or necklace bead
behavior.(18) In our case we found that the actual behavior of mean size as a function
of number of monomers is complicated, and shows log-periodic oscillations. While
we would not expect exact log-periodic oscillations in the more general problem
(there is no discrete scale invariance), one would certainly expect a change in
behavior if the polymer size of same order as the size of favorable/unfavorable
regions in the medium. The swelling or collapse seen in the simulations and
experiments may be the result of a non-monotonic variation of effective exponents
with polymer size.
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